Reachable elements in basic classical Lie superalgebras

نویسندگان

چکیده

Let g=g0¯⊕g1¯ be a basic classical Lie superalgebra over C, e∈g0¯ nilpotent element and ge the centralizer of e in g. We study various properties elements g, which have previously only been considered case algebras. In particular, we prove that is reachable if satisfies Panyushev property for g=sl(m|n), m≠n or psl(n|n) osp(m|2n). For exceptional superalgebras g=D(2,1;α), G(3), F(4), give classification are reachable, strongly satisfy property. addition, bases its centre z(ge) g=psl(n|n), completes results Han on relationship between dim⁡ge, dim⁡z(ge) labelled Dynkin diagrams all superalgebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally finite basic classical simple Lie superalgebras

In this work, we study direct limits of finite dimensional basic classical simple Lie superalgebras and obtain the conjugacy classes of Cartan subalgebras under the group of automorphisms.

متن کامل

Grothendieck Rings of Basic Classical Lie Superalgebras

The Grothendieck rings of finite dimensional representations of the basic classical Lie superalgebras are explicitly described in terms of the corresponding generalised root systems. We show that they can be interpreted as the subrings in the weight group rings invariant under the action of certain groupoids, which we call Weyl groupoids.

متن کامل

Annihilation Theorem and Separation Theorem for Basic Classical Lie Superalgebras

In this article we prove that for a basic classical Lie superalgebra the annihilator of a strongly typical Verma module is a centrally generated ideal. For a basic classical Lie superalgebra of type I we prove that the localization of the enveloping algebra by a certain central element is free over its centre.

متن کامل

Strongly Typical Representations of the Basic Classical Lie Superalgebras

1.1. In [PS1], I. Penkov and V. Serganova show that the category of representations of a basic classical Lie superalgebra g of type I with a fixed typical central character is equivalent to the category of representations of the even part g0 with a suitable central character. A similar result for type II was proven by I. Penkov in [P] for “generic” central characters. The aim of this paper is t...

متن کامل

Parabolic category O for classical Lie superalgebras

We compare properties of (the parabolic version of) the BGG category O for semi-simple Lie algebras with those for classical (not necessarily simple) Lie superalgebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2022.12.021